111
Audio-Visual Camera Pose Estimationn with Passive Scene Sounds and In-the-Wild Video
arXiv:2512.12165v1 Announce Type: new
Abstract: Understanding camera motion is a fundamental problem in embodied perception and 3D scene understanding. While visual methods have advanced rapidly, they often struggle under visually degraded conditions such as motion blur or occlusions. In this work, we show that passive scene sounds provide complementary cues for relative camera pose estimation for in-the-wild videos. We introduce a simple but effective audio-visual framework that integrates direction-ofarrival (DOA) spectra and binauralized embeddings into a state-of-the-art vision-only pose estimation model. Our results on two large datasets show consistent gains over strong visual baselines, plus robustness when the visual information is corrupted. To our knowledge, this represents the first work to successfully leverage audio for relative camera pose estimation in real-world videos, and it establishes incidental, everyday audio as an unexpected but promising signal for a classic spatial challenge. Project: http://vision.cs.utexas.edu/projects/av_camera_pose.
Abstract: Understanding camera motion is a fundamental problem in embodied perception and 3D scene understanding. While visual methods have advanced rapidly, they often struggle under visually degraded conditions such as motion blur or occlusions. In this work, we show that passive scene sounds provide complementary cues for relative camera pose estimation for in-the-wild videos. We introduce a simple but effective audio-visual framework that integrates direction-ofarrival (DOA) spectra and binauralized embeddings into a state-of-the-art vision-only pose estimation model. Our results on two large datasets show consistent gains over strong visual baselines, plus robustness when the visual information is corrupted. To our knowledge, this represents the first work to successfully leverage audio for relative camera pose estimation in real-world videos, and it establishes incidental, everyday audio as an unexpected but promising signal for a classic spatial challenge. Project: http://vision.cs.utexas.edu/projects/av_camera_pose.