0
Delaunay-Rips filtration: a study and an algorithm
arXiv:2512.17382v1 Announce Type: new
Abstract: The Delaunay-Rips filtration is a lighter and faster alternative to the well-known Rips filtration for low-dimensional Euclidean point clouds. Despite these advantages, it has seldom been studied. In this paper, we aim to bridge this gap by providing a thorough theoretical and empirical analysis of this construction. From a theoretical perspective, we show how the persistence diagrams associated with the Delaunay-Rips filtration approximate those obtained with the Rips filtration. Additionally, we describe the instabilities of the Delaunay-Rips persistence diagrams when the input point cloud is perturbed. Finally, we introduce an algorithm that computes persistence diagrams of Delaunay-Rips filtrations in any dimension. We show that our method is faster and has a lower memory footprint than traditional approaches in low dimensions. Our C++ implementation, which comes with Python bindings, is available at https://github.com/MClemot/GeoPH.
Abstract: The Delaunay-Rips filtration is a lighter and faster alternative to the well-known Rips filtration for low-dimensional Euclidean point clouds. Despite these advantages, it has seldom been studied. In this paper, we aim to bridge this gap by providing a thorough theoretical and empirical analysis of this construction. From a theoretical perspective, we show how the persistence diagrams associated with the Delaunay-Rips filtration approximate those obtained with the Rips filtration. Additionally, we describe the instabilities of the Delaunay-Rips persistence diagrams when the input point cloud is perturbed. Finally, we introduce an algorithm that computes persistence diagrams of Delaunay-Rips filtrations in any dimension. We show that our method is faster and has a lower memory footprint than traditional approaches in low dimensions. Our C++ implementation, which comes with Python bindings, is available at https://github.com/MClemot/GeoPH.