0
Don't Adapt Small Language Models for Tools; Adapt Tool Schemas to the Models
arXiv:2510.07248v2 Announce Type: replace
Abstract: Small language models (SLMs) enable scalable multi-agent tool systems where multiple SLMs handle subtasks orchestrated by a powerful coordinator. However, they struggle with tool-use tasks, particularly in selecting appropriate tools and identifying correct parameters. A common failure mode is schema misalignment: models hallucinate plausible but nonexistent tool names that reflect naming conventions internalized during pretraining but absent from the provided tool schema. Rather than forcing models to adapt to arbitrary schemas, we propose adapting schemas to align with models' pretrained knowledge. We introduce PA-Tool (Pretraining-Aligned Tool Schema Generation), a training-free method that leverages peakedness, a signal from contamination detection indicating pretraining familiarity, to rename tool components. By generating multiple candidates and selecting those with the highest peakedness across samples, PA-Tool identifies pretraining-aligned naming patterns. Experiments on MetaTool and RoTBench show improvements of up to 17%, with schema misalignment errors reduced by 80%.
PA-Tool enables small models to approach state-of-the-art performance while maintaining computational efficiency in adapting to new tools without retraining. Our work demonstrates that schema-level interventions can unlock the tool-use potential of resource-efficient models by adapting schemas to models rather than models to schemas.
Abstract: Small language models (SLMs) enable scalable multi-agent tool systems where multiple SLMs handle subtasks orchestrated by a powerful coordinator. However, they struggle with tool-use tasks, particularly in selecting appropriate tools and identifying correct parameters. A common failure mode is schema misalignment: models hallucinate plausible but nonexistent tool names that reflect naming conventions internalized during pretraining but absent from the provided tool schema. Rather than forcing models to adapt to arbitrary schemas, we propose adapting schemas to align with models' pretrained knowledge. We introduce PA-Tool (Pretraining-Aligned Tool Schema Generation), a training-free method that leverages peakedness, a signal from contamination detection indicating pretraining familiarity, to rename tool components. By generating multiple candidates and selecting those with the highest peakedness across samples, PA-Tool identifies pretraining-aligned naming patterns. Experiments on MetaTool and RoTBench show improvements of up to 17%, with schema misalignment errors reduced by 80%.
PA-Tool enables small models to approach state-of-the-art performance while maintaining computational efficiency in adapting to new tools without retraining. Our work demonstrates that schema-level interventions can unlock the tool-use potential of resource-efficient models by adapting schemas to models rather than models to schemas.