111

arXiv:2411.13929v2 Announce Type: replace
Abstract: Digitizing engineering diagrams like Piping and Instrumentation Diagrams (P&IDs) plays a vital role in maintainability and operational efficiency of process and hydraulic systems. Previous methods typically decompose the task into separate steps such as symbol detection and line detection, which can limit their ability to capture the structure in these diagrams. In this work, a transformer-based approach leveraging the Relationformer that addresses this limitation by jointly extracting symbols and their interconnections from P&IDs is introduced. To evaluate our approach and compare it to a modular digitization approach, we present the first publicly accessible benchmark dataset for P&ID digitization, annotated with graph-level ground truth. Experimental results on real-world diagrams show that our method significantly outperforms the modular baseline, achieving over 25% improvement in edge detection accuracy. This research contributes a reproducible evaluation framework and demonstrates the effectiveness of transformer models for structural understanding of complex engineering diagrams. The dataset is available under https://zenodo.org/records/14803338.