222

arXiv:2512.15738v1 Announce Type: new
Abstract: Financial market prediction is a challenging application of machine learning, where even small improvements in directional accuracy can yield substantial value. Most models struggle to exceed 55--57\% accuracy due to high noise, non-stationarity, and market efficiency. We introduce a hybrid ensemble framework combining quantum sentiment analysis, Decision Transformer architecture, and strategic model selection, achieving 60.14\% directional accuracy on S\&P 500 prediction, a 3.10\% improvement over individual models.
Our framework addresses three limitations of prior approaches. First, architecture diversity dominates dataset diversity: combining different learning algorithms (LSTM, Decision Transformer, XGBoost, Random Forest, Logistic Regression) on the same data outperforms training identical architectures on multiple datasets (60.14\% vs.\ 52.80\%), confirmed by correlation analysis ($r>0.6$ among same-architecture models). Second, a 4-qubit variational quantum circuit enhances sentiment analysis, providing +0.8\% to +1.5\% gains per model. Third, smart filtering excludes weak predictors (accuracy $