9

arXiv:2508.02187v2 Announce Type: replace
Abstract: 4D millimeter wave radars (4D radars) are new emerging sensors that provide point clouds of objects with both position and radial velocity measurements. Compared to LiDARs, they are more affordable and reliable sensors for robots' perception under extreme weather conditions. On the other hand, point cloud registration is an essential perception module that provides robot's pose feedback information in applications such as Simultaneous Localization and Mapping (SLAM). Nevertheless, the 4D radar point clouds are sparse and noisy compared to those of LiDAR, and hence we shall confront great challenges in registering the radar point clouds. To address this issue, we propose a point cloud registration framework for 4D radars based on Generalized Method of Moments. The method does not require explicit point-to-point correspondences between the source and target point clouds, which is difficult to compute for sparse 4D radar point clouds. Moreover, we show the consistency of the proposed method. Experiments on both synthetic and real-world datasets show that our approach achieves higher accuracy and robustness than benchmarks, and the accuracy is even comparable to LiDAR-based frameworks.