0
Towards Knowledge Guided Pretraining Approaches for Multimodal Foundation Models: Applications in Remote Sensing
arXiv:2407.19660v4 Announce Type: replace
Abstract: Self-supervised learning has emerged as a powerful paradigm for pretraining foundation models using large-scale data. Existing pretraining approaches predominantly rely on masked reconstruction or next-token prediction strategies, demonstrating strong performance across various downstream tasks, including geoscience applications. However, these approaches do not fully capture the knowledge of causal interplay between different geospatial and environmental variables. To address this limitation, we propose Knowledge Guided Variable-Step Forecasting (KG-VSF), a novel pretraining task that models forecasting as a conditional generation task, where driver variables (e.g., weather) inform the prediction of response variables (e.g., satellite imagery). We demonstrate that pretraining in such a fashion leads to strong embeddings which give enhanced performance when finetuned on downstream tasks where capturing this causality matters such as pixel wise crop type mapping, soil moisture estimation and forecasting, missing image prediction, and future image forecasting when compared to finetuning embeddings from other standard pretraining approaches.
Abstract: Self-supervised learning has emerged as a powerful paradigm for pretraining foundation models using large-scale data. Existing pretraining approaches predominantly rely on masked reconstruction or next-token prediction strategies, demonstrating strong performance across various downstream tasks, including geoscience applications. However, these approaches do not fully capture the knowledge of causal interplay between different geospatial and environmental variables. To address this limitation, we propose Knowledge Guided Variable-Step Forecasting (KG-VSF), a novel pretraining task that models forecasting as a conditional generation task, where driver variables (e.g., weather) inform the prediction of response variables (e.g., satellite imagery). We demonstrate that pretraining in such a fashion leads to strong embeddings which give enhanced performance when finetuned on downstream tasks where capturing this causality matters such as pixel wise crop type mapping, soil moisture estimation and forecasting, missing image prediction, and future image forecasting when compared to finetuning embeddings from other standard pretraining approaches.