213
Cryptanalysis of Pseudorandom Error-Correcting Codes
arXiv:2512.17310v1 Announce Type: new
Abstract: Pseudorandom error-correcting codes (PRC) is a novel cryptographic primitive proposed at CRYPTO 2024. Due to the dual capability of pseudorandomness and error correction, PRC has been recognized as a promising foundational component for watermarking AI-generated content. However, the security of PRC has not been thoroughly analyzed, especially with concrete parameters or even in the face of cryptographic attacks. To fill this gap, we present the first cryptanalysis of PRC. We first propose three attacks to challenge the undetectability and robustness assumptions of PRC. Among them, two attacks aim to distinguish PRC-based codewords from plain vectors, and one attack aims to compromise the decoding process of PRC. Our attacks successfully undermine the claimed security guarantees across all parameter configurations. Notably, our attack can detect the presence of a watermark with overwhelming probability at a cost of $2^{22}$ operations. We also validate our approach by attacking real-world large generative models such as DeepSeek and Stable Diffusion. To mitigate our attacks, we further propose three defenses to enhance the security of PRC, including parameter suggestions, implementation suggestions, and constructing a revised key generation algorithm. Our proposed revised key generation function effectively prevents the occurrence of weak keys. However, we highlight that the current PRC-based watermarking scheme still cannot achieve a 128-bit security under our parameter suggestions due to the inherent configurations of large generative models, such as the maximum output length of large language models.
Abstract: Pseudorandom error-correcting codes (PRC) is a novel cryptographic primitive proposed at CRYPTO 2024. Due to the dual capability of pseudorandomness and error correction, PRC has been recognized as a promising foundational component for watermarking AI-generated content. However, the security of PRC has not been thoroughly analyzed, especially with concrete parameters or even in the face of cryptographic attacks. To fill this gap, we present the first cryptanalysis of PRC. We first propose three attacks to challenge the undetectability and robustness assumptions of PRC. Among them, two attacks aim to distinguish PRC-based codewords from plain vectors, and one attack aims to compromise the decoding process of PRC. Our attacks successfully undermine the claimed security guarantees across all parameter configurations. Notably, our attack can detect the presence of a watermark with overwhelming probability at a cost of $2^{22}$ operations. We also validate our approach by attacking real-world large generative models such as DeepSeek and Stable Diffusion. To mitigate our attacks, we further propose three defenses to enhance the security of PRC, including parameter suggestions, implementation suggestions, and constructing a revised key generation algorithm. Our proposed revised key generation function effectively prevents the occurrence of weak keys. However, we highlight that the current PRC-based watermarking scheme still cannot achieve a 128-bit security under our parameter suggestions due to the inherent configurations of large generative models, such as the maximum output length of large language models.
No comments yet.