0

arXiv:2512.15906v1 Announce Type: new
Abstract: Many large language models (LLMs) are trained on a massive body of knowledge present on the Internet. Darth Vecdor (DV) was designed to extract this knowledge into a structured, terminology-mapped, SQL database ("knowledge base" or "knowledge graph"). Knowledge graphs may be useful in many domains, including healthcare. Although one might query an LLM directly rather than a SQL-based knowledge graph, concerns such as cost, speed, safety, and confidence may arise, especially in high-volume operations. These may be mitigated when the information is pre-extracted from the LLM and becomes query-able through a standard database. However, the author found the need to address several issues. These included erroneous, off-topic, free-text, overly general, and inconsistent LLM responses, as well as allowing for multi-element responses. DV was built with features intended to mitigate these issues. To facilitate ease of use, and to allow for prompt engineering by those with domain expertise but little technical background, DV provides a simple, browser-based graphical user interface. DV has been released as free, open-source, extensible software, on an "as is" basis, without warranties or conditions of any kind, either express or implied. Users need to be cognizant of the potential risks and benefits of using DV and its outputs, and users are responsible for ensuring any use is safe and effective. DV should be assumed to have bugs, potentially very serious ones. However, the author hopes that appropriate use of current and future versions of DV and its outputs can help improve healthcare.
Be respectful and constructive. Comments are moderated.

No comments yet.