109

arXiv:2507.20560v2 Announce Type: replace-cross
Abstract: Privacy preservation in machine learning, particularly through Differentially Private Stochastic Gradient Descent (DP-SGD), is critical for sensitive data analysis. However, existing statistical inference methods for SGD predominantly focus on cyclic subsampling, while DP-SGD requires randomized subsampling. This paper first bridges this gap by establishing the asymptotic properties of SGD under the randomized rule and extending these results to DP-SGD. For the output of DP-SGD, we show that the asymptotic variance decomposes into statistical, sampling, and privacy-induced components. Two methods are proposed for constructing valid confidence intervals: the plug-in method and the random scaling method. We also perform extensive numerical analysis, which shows that the proposed confidence intervals achieve nominal coverage rates while maintaining privacy.
Be respectful and constructive. Comments are moderated.

No comments yet.