111
Vision-Based Learning for Cyberattack Detection in Blockchain Smart Contracts and Transactions
arXiv:2512.11272v1 Announce Type: new
Abstract: Blockchain technology has experienced rapid growth and has been widely adopted across various sectors, including healthcare, finance, and energy. However, blockchain platforms remain vulnerable to a broad range of cyberattacks, particularly those aimed at exploiting transactions and smart contracts (SCs) to steal digital assets or compromise system integrity. To address this issue, we propose a novel and effective framework for detecting cyberattacks within blockchain systems. Our framework begins with a preprocessing tool that uses Natural Language Processing (NLP) techniques to transform key features of blockchain transactions into image representations. These images are then analyzed through vision-based analysis using Vision Transformers (ViT), a recent advancement in computer vision known for its superior ability to capture complex patterns and semantic relationships. By integrating NLP-based preprocessing with vision-based learning, our framework can detect a wide variety of attack types. Experimental evaluations on benchmark datasets demonstrate that our approach significantly outperforms existing state-of-the-art methods in terms of both accuracy (achieving 99.5%) and robustness in cyberattack detection for blockchain transactions and SCs.
Abstract: Blockchain technology has experienced rapid growth and has been widely adopted across various sectors, including healthcare, finance, and energy. However, blockchain platforms remain vulnerable to a broad range of cyberattacks, particularly those aimed at exploiting transactions and smart contracts (SCs) to steal digital assets or compromise system integrity. To address this issue, we propose a novel and effective framework for detecting cyberattacks within blockchain systems. Our framework begins with a preprocessing tool that uses Natural Language Processing (NLP) techniques to transform key features of blockchain transactions into image representations. These images are then analyzed through vision-based analysis using Vision Transformers (ViT), a recent advancement in computer vision known for its superior ability to capture complex patterns and semantic relationships. By integrating NLP-based preprocessing with vision-based learning, our framework can detect a wide variety of attack types. Experimental evaluations on benchmark datasets demonstrate that our approach significantly outperforms existing state-of-the-art methods in terms of both accuracy (achieving 99.5%) and robustness in cyberattack detection for blockchain transactions and SCs.
No comments yet.